What is the time option UTC+2 mean?

What is the time option UTC+2 mean? i have that option on my jforex options in the tools section.

I would love for this to be the New York close. i would be more comfortable using charting set on the New York close, like many, if I could influence your future planning preferences. Thanks.

Translate to English Show original

Mehfooz avatar
Mehfooz 1 Dec.

for any problem or issue feel free to contact support chat

orto leave comments

Answers: 2

Best Answer

Coordinated Universal Time (French: Temps Universel Coordonné, UTC) is the primary time standard by which the world regulates clocks and time. It is one of several closely related successors to Greenwich Mean Time (GMT). For most purposes, UTC is used interchangeably with GMT, but GMT is no longer precisely defined by the scientific community.

Uses

Time zones around the world are expressed as positive or negative offsets from UTC, as in the list of time zones by UTC offset.

UTC is used in many Internet and World Wide Web standards. The Network Time Protocol, designed to synchronise the clocks of computers over the Internet, encodes times using the UTC system.[10]

Computer servers, online services and other entities that rely on having a universally accepted time use UTC as it is more specific than GMT. If only limited precision is needed, clients can obtain the current UTC time from a number of official Internet UTC servers. For sub-microsecond precision, clients can obtain the time from satellite signals.

UTC is also the time standard used in aviation,[11] e.g., for flight plans and air traffic control clearances. Weather forecasts and maps all use UTC to avoid confusion about time zones and daylight saving time.

Mechanism

UTC divides time into days, hours, minutes and seconds. Days are conventionally identified using the Gregorian calendar, but Julian day numbers can also be used. Each day contains 24 hours and each hour contains 60 minutes. The number of seconds in a minute is usually 60, but with an occasional leap second, it may be 61 or 59 instead.[13] Thus, in the UTC time scale, the second and all smaller time units (millisecond, microsecond, etc.) are of constant duration, but the minute and all larger time units (hour, day, week, etc.) are of variable duration. Decisions to introduce a leap second are announced at least 8 weeks in advance in "Bulletin C" produced by the International Earth Rotation and Reference Systems Service.[14][15] The leap seconds cannot be predicted far in advance due to the unpredictable rate of rotation of the Earth.[16]

Nearly all UTC days contain exactly 86,400 SI seconds, with exactly 60 seconds in each minute. However, because the mean solar day is slightly longer than 86,400 SI seconds, occasionally the last minute of a UTC day is adjusted to have 61 seconds. The extra second is called a leap second. It accounts for the grand total of the extra length (about 2 milliseconds each) of all the mean solar days since the previous leap second. The last minute of a UTC day is permitted to contain 59 seconds to cover the remote possibility of the Earth rotating faster, but that has not yet been necessary. The irregular day lengths mean that fractional Julian days do not work properly with UTC.

Since 1972, UTC is calculated by subtracting the accumulated leap seconds from International Atomic Time (TAI), which is a coordinate time scale tracking notional proper time on the rotating surface of the Earth (the geoid). In order to maintain a close approximation to UT1 (equivalent to GMT before 1960), UTC occasionally has discontinuities where it changes from one linear function of TAI to another. These discontinuities take the form of leap seconds implemented by a UTC day of irregular length. Discontinuities in UTC have occurred only at the end of a Gregorian month.[17] The International Earth Rotation and Reference Systems Service (IERS) tracks and publishes the difference between UTC and Universal Time, DUT1 = UT1 – UTC, and introduces discontinuities into UTC to keep DUT1 in the interval (−0.9 s, +0.9 s). Since 1972, the discontinuities have consisted only of a leap of one second at the end of 30 June or 31 December.[18]

As with TAI, UTC is only known with the highest precision in retrospect. Users who require an approximation in real time must obtain it from a time laboratory, which disseminates an approximation using techniques such as GPS or radio time signals. Such approximations are designated UTC(k), where k is an abbreviation for the time laboratory.[19] The time of events may be provisionally recorded against one of these approximations; later corrections may be applied using the International Bureau of Weights and Measures (BIPM) monthly publication of tables of differences between canonical TAI/UTC and TAI(k)/UTC(k) as estimated in real time by participating laboratories.[20] (See the article on International Atomic Time for details.)

Because of time dilation, a standard clock not on the geoid, or in rapid motion, will not maintain synchronicity with UTC. Therefore, telemetry from clocks with a known relation to the geoid is used to provide UTC when required, on locations such as those of spacecraft.

UTC is a discontinuous timescale, so it is not possible to compute the exact time interval elapsed between two UTC timestamps without consulting a table that describes how many leap seconds occurred during that interval. Therefore, many scientific applications that require precise measurement of long (multi-year) intervals use TAI instead. TAI is also commonly used by systems that cannot handle leap seconds. A fixed 19‑second offset from TAI also gives GPS time.

For most common and legal-trade purposes, the fractional second difference between UTC and UT (GMT) is inconsequentially small, so UTC is often called GMT (for instance, by the BBC).

Current number of leap seconds

The first leap second occurred on 30 June 1972. Since then, leap seconds have occurred on average about once every 19 months, always on 30 June or 31 December. As of June 2014, there have been 25 leap seconds in total, all positive, putting UTC 35 seconds behind TAI.

Rationale
Graph showing the difference DUT1 between UT1 and UTC (in seconds). Vertical segments correspond to leap seconds.

Earth's rotational speed is very slowly decreasing because of tidal deceleration; this increases the length of the mean solar day. The length of the SI second was calibrated on the basis of the second of ephemeris time[32][35] and can now be seen to have a relationship with the mean solar day observed between 1750 and 1892, analysed by Simon Newcomb. As a result, the SI second is close to 1/86400 of a mean solar day in the mid‑19th century.[40] In earlier centuries, the mean solar day was shorter than 86,400 SI seconds, and in more recent centuries it is longer than 86,400 seconds. Near the end of the 20th century, the length of the mean solar day (also known simply as "length of day" or "LOD") was approximately 86,400.0013 s.[41] For this reason, UT is now "slower" than TAI by the difference (or "excess" LOD) of 1.3 ms/day.

The excess of the LOD over the nominal 86,400 s accumulates over time, causing the UTC day, initially synchronised with the mean sun, to become desynchronised and run ahead of it. Near the end of the 20th century, with the LOD at 1.3 ms above the nominal value, UTC ran faster than UT by 1.3 ms per day, getting a second ahead roughly every 800 days. Thus, leap seconds were inserted at approximately this interval, retarding UTC to keep it synchronised in the long term.[42] Note that the actual rotational period varies on unpredictable factors such as tectonic motion and has to be observed, rather than computed.

Just as adding a leap day every four years does not mean the year is getting longer by one day every four years, the insertion of a leap second every 800 days does not indicate that the mean solar day is getting longer by a second every 800 days. It will take approximately 50,000 years for a mean solar day to lengthen by one second (at a rate of 2 ms/cy). This rate fluctuates within the range of 1.7–2.3 ms/cy. While the rate due to tidal friction alone is about 2.3 ms/cy, the uplift of Canada and Scandinavia by several metres since the last Ice Age has temporarily reduced this to 1.7 ms/cy over the last 2,700 years.[43] The correct reason for leap seconds, then, is not the current difference between actual and nominal LOD, but rather the accumulation of this difference over a period of time: Near the end of the 20th century, this difference was about 1/800 of a second per day; therefore, after about 800 days, it accumulated to 1 second (and a leap second was then added).

For example, assume one starts counting the seconds from the Unix epoch of 1970-01-01T00:00:00 UTC with an atomic clock. At midnight on that day (as measured on UTC), one's counter registers 0 s. After Earth has made one full rotation with respect to the mean Sun, their counter registers approximately 86,400.002 s (the precise value varies depending on plate tectonic conditions). Based on the counter, one can calculate that the date is 1970-01-02T00:00:00 UT1. After 500 rotations, their counter registers 43,200,001 s. Because 86,400 s × 500 is 43,200,000 s, one calculates that the date is 1971-05-16T00:00:01 UTC, while it is only 1971-05-16T00:00:00 UT1. If one had added a leap second on 31 December 1970, reducing the counter by 1 s, then the counter would have a value of 43,200,000 s at 1971-05-16T00:00:00 UT1, and allow one to calculate the correct date.

In the graph of DUT1 above, the excess of LOD above the nominal 86,400 s corresponds to the downward slope of the graph between vertical segments. (Note that the slope became shallower in the 2000s, because of a slight acceleration of Earth's crust temporarily shortening the day.) Vertical position on the graph corresponds to the accumulation of this difference over time, and the vertical segments correspond to leap seconds introduced to match this accumulated difference. Leap seconds are timed to keep DUT1 within the vertical range depicted by this graph. The frequency of leap seconds therefore corresponds to the slope of the diagonal graph segments, and thus to the excess LOD.

So if you like to have NY time, is going to be UTC-5
http://en.wikipedia.org/wiki/List_of_time_zones_by_UTC_offset

Hope this help,
Regards,

Translate to English Show original
14 July 2014 by

orto leave comments

To use New York close based candles that have 00:00 at the start of the day, do the following:

1. Go to "Tools -> Preferences -> General -> Platform time zone" and select "EET (UTC + 2 hours)".

2. Go to "Tools -> Preferences -> Chart-> Day start time" and select "EET (UTC + 2 hours)".

Translate to English Show original
14 Oct. 2015 by

orto leave comments
Please log in or register to post answer.